Novel and Optimized Materials for High Energy Density Batteries

Jordi Cabana
Lawrence Berkeley National Laboratory
05/16/2013

ES070

Overview

Timeline

- Project start Jan 2012
- Project end Sep 2015
- 25% complete

Budget

- Funding FY12: \$450
- Funding FY13: \$450

Barriers

- Barriers addressed
 - Gravimetric and volumetric Energy Density
 - Cycle life
 - Safety

Partners

- BATT NiMn Spinel Focus Group.
- Battaglia, Srinivasan, Kostecki, Persson, Chan (LBNL), Beamline scientists at SSRL and ALS, Grey (CU), Casas-Cabanas (CIC)

Relevance - Objectives

- To achieve cycle life and energy density targets using high capacity, high voltage electrode materials.
 - Establish chemistry-structure-properties correlations and assess origins of inefficiencies to aid in the design of better materials.
 - Discover new materials with improved chemical and electrochemical stability.
 - barriers: energy density, cycle life, safety
- To understand the correlation between chemistry, phase transformations and electrode performance.
 - Develop methods to couple parameters at multiple length scales.
 - Provide inputs for electrode design and modeling teams to enable battery engineering improvements and life predictions.
 - barriers: energy density, cycle life

Milestones

Mar. 12	Complete the crystal-chemical characterization of annealed LiNi _{1/2} Mn _{3/2} O ₄ and identify its role on electrochemical performance. Completed
Sep. 12	Synthesize and physico-chemically characterize at least two different new phases showing an oxyfluoride network, containing lithium and a light transition metal. Delayed to FY13
Sep. 12	Identify the influence of oxide additives on the extent of electrolyte-electrode side reactions in spinel electrodes. Completed
Mar. 13	Complete in operando X-ray diffraction study of at least 4 samples of LiNi _{1/2} Mn _{3/2} O ₄ with different degrees of order/disorder. Completed
Apr 13	Develop a synthetic protocol for the extensive fluorination of Li-M-O (M=Mn, Fe, Cu) using low temperature treatments. On schedule
Sep. 13	Synthesize at least two new Li-M-O-F (M=Mn, Fe, Cu) using direct high temperature methods. On schedule
Sep. 13	Determine changes during cycling of the surface chemistry of LiNi _{1/2} Mn _{3/2} O ₄ depending on coatings and doping, in coordination with the Spinel Focus Group. On schedule

Approach/Strategy

- Establish composition-structure-electrochemical properties correlations in LiNi_{1/2}Mn_{3/2}O₄.
 - Synthesize samples with controlled microstructure, composition, ordering to define the role of crystal chemical parameters.
 - Establish the role of electrode surface chemistry on in-cycle efficiencies.
 - Ultimate goal: 100% utilization at 2C rate, 85% 1st cycle efficiency and 99.99% steady-state efficiency at C/2 rate.
- Discover new electrode materials that overcome barriers of high voltage and capacity.
 - Leverage knowledge created with LiNi_{1/2}Mn_{3/2}O₄.
 - Explore Li-M-O-F space (M=Fe, Mn, Cu) in search for completely new phases. Synergy with Materials Prediction teams in BATT.
- Use synchrotron radiation to characterize electrode materials at multiple length scales.
 - Combination of diffraction, spectroscopy and imaging to evaluate inhomogeneities at nano, meso and macro scale.
 - Create a body of knowledge of electrode function that can be leveraged by electrode engineering and modeling teams in BATT.

LiNi_{1/2}Mn_{3/2}O₄: a material with rich crystal chemistry

Cabana et al., Chem. Mater. 24 (2012) 2952 Cabana et al., J. Electrochem. Soc. 158 (2011) A997

- Samples synthesized from hydroxide precursors at 500°C≤T≤1000°C for 12 h.
- Clear Ni-Mn ordering transition at 700°C. Generation of Mn³⁺ at high temperature.
- NMR: Different Ni-Mn ordering schemes are possible.

Identification of electrochemical proxies

Decoupled chemical parameters by sample annealing

Electrochemistry-ordering correlations are much stronger

- Correlation between disorder and better retention at higher rates.
- Variability in Mn³⁺ contents within disorder (2.6-5.2%) does not produce substantial 9 Kim et al., Submitted for publication differences.

Restricting voltage window offers other clues

Rate (C)	Retention @ 4.4 V	Retention @ 3.5 V
1/10	97.63 %	96.35 %
1	97.25 %	96.86 %
5	101.35 %	103.51 %

Rate (C)	Retention @ 4.4 V	Retention @ 3.5 V
1/10	63.64 %	73.57 %
1	68.01 %	73.26 %
5	61.02 %	79.65 %

- <u>Disordered samples</u>: No significant change found when cycling at restricted windows \Rightarrow presence of Mn³⁺ has a modest effect on rate performance (=transport).
- Ordered samples: Worse retention in restricted window \Rightarrow is a very small amount of Mn³⁺ 10 desirable?

Why are ordered and disordered samples different?

Capacity (mAh/g)

Formation of solid solutions favors high rate performance

• Cutting voltage at 4.4 V in ordered samples leads to domains that are still two-phase \Rightarrow phase transformation hysteresis?

Phase transformation inhomogeneity in thick NMC electrodes

- 150 μm thick NMC333 electrodes supply by Battaglia group.
- Charged to 1C + Relax.
- Collected XRD in transmission (averaged through electrode depth)
- Peak evolution during relaxation suggests changes in composition + built-in inhomogeneities.

Normalized Intensity

Scattering Angle (2θ)

Chemical changes at the LiNi_{1/2}Mn_{3/2}O₄ electrode surface

- Line shape changes for Ni \Rightarrow oxidation of Ni²⁺.
- Small shoulder develops at O pre-edge \Rightarrow Ni-O bond nature is changing.
- Significant differences between TEY and TFY ⇒ surface is less oxidized?
 - <u>Proposed mechanism</u>: material has active participation in electrolyte decomposition; oxidized (acidic) Ni(-O) attacks electrolyte molecules.

Li-M-O-F, toward chemically stable high voltage electrodes

- Liao et al., J. Electrochem. Soc. 157 (2010), 19. Kobayashi et al., J. Am. Chem. Soc. 131 (2009), A355.
- Goal: search for new phases with 200+ mAh/g capacities = $1 + e^{-}/total$ transition metal (TM) reversibly cycled.
- Needs to rely on high TM oxidation states \Rightarrow stabilization using F-.
- Li-M-F: low electronic conductivity \Rightarrow oxyfluorides as synergistic phases. Oxyfluorides with semiconducting properties are known.

Exploration of new Li-M-O-F initiated in FY12

- Goal: explore Li-M-O-F space (M=Fe, Mn, Cu) in search for <u>completely new</u> phases with substantial amounts of F (>20% total anionic content). Synergy with Persson/Ceder (Materials Prediction).
- Synthetic strategies:
 - Classical solid state: High T treatment of mixtures of LiF/MF_x, Li₂O/MO_x, inert atmosphere.
 - Low temperature routes (<400°C):
 - Precipitation/thermolysis of precursors in high boiling point solvents.
 - Mild fluorination: Mix pre-formed Li-M-O with PVDF, heat to induce F insertion.

Collaboration and Coordination with Other Institutions

Within BATT:

- Members of the NiMn Spinel Focus Group.
- Dr. V. Battaglia, V. Srinivasan (LBNL): understanding of composite electrode function.
- Dr. R. Kostecki (LBNL): understanding surface reactivity in cathode materials.
- Prof. C.P. Grey (SUNY-SB): MAS-NMR of electrode materials.
- Dr. K. Persson (LBNL), Prof. G. Ceder (MIT): Discovery of new electrode materials.
- Prof. M. S. Whittingham (SUNY-Binghamton): magnetic properties of materials.

Outside BATT:

- Dr. M. Casas-Cabanas (CIC Energigune, Spain): neutron diffraction of electrode materials.
- Dr. C. Delacourt (LRCS, France): understanding of composite electrode function.
- Dr. E. Chan (LBNL): synthesis of materials with controlled nanostructures.

Future Work

- Shift attention from bulk effects to electrode surface-electrolyte in LiNi_{1/2}Mn_{3/2}O₄:
 - Establish robust understanding of side reactions and their possible acid-base (electrode-electrolyte) origin.
 - Use X-ray spectroscopy to understand differences between materials with different modifications, e.g. ion substitution, coatings.
 - Develop new X-ray-based tools that increased selectivity, sensitivity and specificity.
- Continue exploration of Li-M-O-F chemical spaces:
 - In collaboration with computational teams in BATT.
 - Complete the design of synthetic methods: protocols of fluorination reactions and colloidal synthesis to produce large amounts of nanoscale Li-M-F.
 - Exploration of Li-Mn/Fe/Ni-O-F using classical solid state reactions.
- Develop a better understanding of phase transformations at the electrode level, with the goal of locating SOC inhomogeneities.

Summary

- Continued to uncover and describe the rich crystal-chemistry of LiNi_{0.5}Mn_{1.5}O₄:
 - Annealing was used as means to control crystal-chemistry while "freezing" microstructure.
- Strong correlation between rate capability (transport) and disorder. Weak correlation with Mn³⁺, although small amounts may still be necessary.
- Crystal chemistry can have an impact through the phase transformations that occur during electrode operation:
 - Excellent performance of LiNi_{0.5}Mn_{1.5}O₄ with increasing disorder is driven by extended solid solution region.
 - Evidence of possible chemical gradients in thick NMC electrodes suggested by in situ XRD.
- Decoupling between surface and bulk oxidations states in high voltage electrodes suggests electrolyte decomposition is driven by acidic M-O surface species:
 - Increase ionicity of the bond by using new Li-M-O-F phases.